Non-infectious causes of gastrointestinal disease in migrants

Stuart Bloom
University College London Hospitals
NHS Foundation Trust

11 Sept 2013
Case scenarios

- Bloody diarrhoea in 75 year old Bangladeshi
- Iron deficiency anaemia in 50 year old non-English speaking Asian woman
- Diarrhoea in 20 year old law student
- Abdominal pain and diarrhoea in 30 year old Polish decorator
- Managing urgent GI case in community
Bloody diarrhoea in 75 yo bangaladeshi man

- 75 yo from East End: type 2 diabetic
- Home to Bangladesh
- Returns with bloody diarrhoea; stool cultures negative
- Sigmoidoscopy shows confluent colitis to mid transverse colon
Size of the problem

- **Prevalence**
 - UC 250/100,000
 - CD 100/100,000

- **Incidence**
 - CD 5-10/100,000/yr
 - UC 10-15/100,000/year

- 80% lifetime operation rate for CD, 20% colectomy incidence for UC
- 10% receive Mabs costing c10k/year
- IBD confers Increased risk of colorectal cancer
- Total cost to UK economy 0.7-1 billion/year
Reasons to study IBD in Migrants

• Evolving pattern of disease in developing countries
• An evolving problem in some Migrant communities (South asians, Askenazi Jews)
• Studying migrant populations may give insights into environmental risk factors
IBD in migrants: issues

• IBD incidence/prevalence in developing world
• Incidence and prevalence in UK migrants
• IBD course in migrants
 – Extent of disease
 – Complications
 – Risk of relapse
• Colorectal cancer risk in migrants
Global map of UC incidence

Ng, Gut 2013
Incidence of UC and CD in Asia

<table>
<thead>
<tr>
<th>Location (reference)</th>
<th>Year</th>
<th>Incidence (cases/10^5/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ulcerative colitis</td>
</tr>
<tr>
<td>Japan (9)</td>
<td>1991</td>
<td>1.95</td>
</tr>
<tr>
<td>Japan (10)</td>
<td>1979</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Seoul, Korea (11)</td>
<td>1986–1997</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>1995–1997</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>1986–1988</td>
<td>0.20</td>
</tr>
<tr>
<td>Hong Kong (12)</td>
<td>1966–1980</td>
<td>0.1</td>
</tr>
<tr>
<td>Singapore (13)</td>
<td>1956–1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Singapore (14)</td>
<td>1965–1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuwait (15)</td>
<td>1977–1982</td>
<td>2.27</td>
</tr>
<tr>
<td>Sultanate, Oman (16)</td>
<td>1987–1994</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Yang IBD 2001
Annual incidence of UC and CD in Japan

Yang 2001 IBD
Incidence of UC and Crohn’s among Migrant Asians

<table>
<thead>
<tr>
<th>Location (reference)</th>
<th>Year</th>
<th>Incidence (cases/10^5/year)</th>
<th>Ulcerative colitis</th>
<th>Crohn’s disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leicestershire, England (20,21)</td>
<td>1981–1989</td>
<td></td>
<td>13.9</td>
<td>3.1</td>
</tr>
<tr>
<td>South Asians</td>
<td></td>
<td></td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Europeans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Asians</td>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Europeans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tower Hamlets, England (23,24)</td>
<td>1981–1989</td>
<td></td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Bangladesh</td>
<td></td>
<td></td>
<td>9.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Europeans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Asians</td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiji (33)</td>
<td>1985–1986</td>
<td></td>
<td>1.7</td>
<td>0.14</td>
</tr>
<tr>
<td>Indians</td>
<td></td>
<td></td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Melanesians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durban, South Africa (34,35)</td>
<td>1983–1987</td>
<td></td>
<td>2.7</td>
<td>0.73</td>
</tr>
<tr>
<td>Indians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinneret, Israel (26)</td>
<td>1965–1994</td>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Arabs</td>
<td></td>
<td></td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Jews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Galilee, Israel (27)</td>
<td>1967–1986</td>
<td></td>
<td>0.96</td>
<td>3.21</td>
</tr>
<tr>
<td>Arabs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yang 2001 Inflamm Bowel diseases
Prevalence of UC and CD in migrant Asians

<table>
<thead>
<tr>
<th>Location (reference)</th>
<th>Year</th>
<th>Ulcerative colitis</th>
<th>Crohn’s disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leicestershire, England (28)</td>
<td>1989</td>
<td>172.5</td>
<td>33.2</td>
</tr>
<tr>
<td>South Asians</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europeans</td>
<td></td>
<td>127.8</td>
<td>75.8</td>
</tr>
<tr>
<td>Kinneret, Israel (26)</td>
<td>1994</td>
<td>26.9</td>
<td>86.7</td>
</tr>
<tr>
<td>Arabs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Galilee, Israel (27)</td>
<td>1986</td>
<td>19.3</td>
<td>64.2</td>
</tr>
<tr>
<td>Arabs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Israel (29)</td>
<td>1992</td>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td>Arabs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jews</td>
<td></td>
<td></td>
<td>50.6</td>
</tr>
</tbody>
</table>

Yang IBD 2001
IBD course in migrant populations

- In developing countries, UC incidence rises first, then CD
- No difference in disease extent: 30% proctitis, 30% left sided, 30% pancolitis
- Higher incidence of UC in male Asians may reflect reluctance of females to seek care
- No major differences in local or systemic complications between Asian migrants and Europeans
- Some evidence of lower colectomy rates in South Asian migrants in Leicester
Environmental risk factors

- Smoking: no good geographical data. Smoking likely does not cause CD but modulates it once present.
- Appendicectomy: associated with lower incidence of UC.
- Dietary factors: saturated fat intake in Japanese.
- Microbiota:
 - new techniques are stimulating much research: hygiene and cold chain hypotheses.
 - Gastroenteritis can predispose to IBD.
- Sun exposure and vitamin D levels.
- Modest link between oral contraceptives and IBD.
Iron deficiency in migrants

- Globally 2 billion people are anaemic
- Iron deficiency most widespread nutritional disorder in the world
75yo south indian

- Presents with UTI, found to be anaemic
- Hb 9.3, MCV 69, CRP 45, Ferritin 35, Iron 8 (7-26), TIBC 75 (41-77) IBS 10.5%

- Is this Iron deficiency?
- According to what criteria?
Diagnosing Iron deficiency

• Ferritin is accurate measure of Iron stores but is acute phase protein made in liver
 – Normal value is over 13 but only when CRP is normal
 – If CRP is raised, lower limit of Ferritin is 100
• TIBC reflects Transferrin – acute phase protein made in liver
• Key measure is Iron Binding saturation: should be over 15%
Differential of microcytic deficiency in Migrants

- Iron deficiency
 - Dietary deficiency
 - Malabsorption due to GI problems or diet high in phytates (legumes, whole grains) or phenols (tannins in tea, wine)
- Blood loss (mennorhagia, infestation with hookworm, schistosomiasis, ascariasis)
- Increased iron needs in growth and pregnancy
- Thalassaemia
- Lead poisoning: eye kohl, calabash chalk
Diarrhoea in a 20 year old law student

- BO 5x/day
- Up at night
- Weight loss 7 lb
- New job
- Pressure at home

- Is this more suggestive of IBD or IBS?
- Do you need to refer to secondary care?
- Are there any tests which can help you decide?
Faecal Calprotectin

Faecal Calprotectin testing in Primary Care
Following a survey of all GP practices, GPs felt the benefits of FCP testing to be

- Provides additional reassurance for patients who may have anxiety or uncertainty about IBS or IBD
- Reduced number of referrals from those tests which have been clearly negative. During this project, a total of 129 patients were spared from referral to secondary care
- Identified cases for referral that may not previously have been clinically indicated
- Greater confidence in diagnosing IBS within primary care without the need for endoscopy.

“Whilst not a formal research trial, NTAC feels that this work is highly suggestive that FCP is a useful tool in the diagnosis of IBS within primary care. “

Northumberland Primary Care IBS Pathway (Based on NICE CG61 Pathway)

Irritable Bowel Syndrome likely if:
Abdominal pain or discomfort which is
- Relieved by defaecation, or
- Associated with altered bowel frequency or stool form,
And at least two of the following:
- Altered stool passage (straining, urgency, incomplete evacuation)
- Abdominal bloating (more common in women than men), distension, tension or hardness
- Symptoms made worse by eating
- Leathery, nausea, backache and bladder symptoms may support diagnosis

Investigations:
- Faecal Calprotectin (FCP) – request on ICE and send stool sample to lab
- NB: Stop NSAIDs 4 weeks prior to FCP testing
- Bloods: FBC, ESR, CRP, TTG (to exclude other diagnoses)
- Consider CA125 in women

FCP negative

FCP indeterminate

FCP positive

FCP strongly positive

1. Abdominal pain, bloating, change in bowel habit >6 months, and
2. **Age <60 years**

“Red Flag” symptoms:
- Unintentional weight loss
- Rectal bleeding
- Family history of bowel/ovarian cancer
- Anaemia
- Abdominal/rectal mass

No red flag symptoms

Consider referral to consultant – 2 week rule referral if cancer suspected

Probable IBS. Low probability of organic pathology.
Lifestyle advice and dietary advice sheet. Physical activity.
Consider:
- Dietetic referral
- Antispasmodic medication (mebeverine, peppermint oil)

Repeat test after 4 weeks. If negative manage as above for IBS. If still indeterminate or positive and symptoms persist then refer to consultant

Moderate probability of organic pathology. Referral to consultant.

High probability of organic pathology. Fast-track referral to consultant using referral form. Patient will be seen within 2 weeks.

Referral to consultant
Abdominal pain and diarrhoea in 30 yo polish decorator

- Epigastric discomfort radiating to back
- Little relief from antacids/PPI
- Loose stools
- Weight loss 5 kg

- 3 relevant investigations?
- Likely diagnosis?
- Management?
Faecal elastase as a marker of pancreatic insufficiency

Table II. [FE-1] compared to clinical diagnosis: all cases.

<table>
<thead>
<tr>
<th>[FE-1]</th>
<th>Clinical diagnosis positive</th>
<th>Clinical diagnosis negative</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td><200 μg/g</td>
<td>32</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>>200 μg/g</td>
<td>9</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>Totals</td>
<td>41</td>
<td>64</td>
<td>105</td>
</tr>
</tbody>
</table>

Sensitivity = 78%, specificity = 76.6%, positive predictive value (PPV) = 78%, negative predictive value (NPV) = 85.9%, diagnostic accuracy = 82.9%.
Faecal elastase as a marker of pancreatic insufficiency

Faecal elastase-1 screening for chronic pancreatitis

Table III. [FE-1] compared to clinical diagnosis: mild acute pancreatitis (Ranson score <3).

<table>
<thead>
<tr>
<th>[FE-1]</th>
<th>Clinical diagnosis positive</th>
<th>Clinical diagnosis negative</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td><200 µg/g</td>
<td>31</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>>200 µg/g</td>
<td>8</td>
<td>49</td>
<td>57</td>
</tr>
<tr>
<td>Totals</td>
<td>39</td>
<td>50</td>
<td>89</td>
</tr>
</tbody>
</table>

Sensitivity = 79.5%, specificity = 98%, positive predictive value (PPV) = 96.9%, negative predictive value (NPV) = 86%, diagnostic accuracy = 89.9%.
Helicobacter pylori

- Effectiveness of HP eradication has fallen largely due to clarithromycin resistance
Helicobacter pylori treatment in the era of increasing antibiotic resistance

David Y Graham, Lori Fischbach

“The time is long overdue to let clinicians know that currently used treatments for HP are not adequately effective, and alternative therapies with over 95% treatment success need to be identified”

Gut 2010; 59:1143-53
Recommendations for treating HP

- Do not use ‘legacy triple therapy’ consisting of a PPI, clarithromycin and amoxicillin unless it has been proven to be highly effective locally (eg, eradication >90% in per-protocol analyses)
- Use higher doses of drugs (eg, 500 mg of clarithromycin, metronidazole and tetracycline) unless it has been shown that lower doses are equally effective
- Use 14 day duration unless a shorter duration has been shown locally to be equally effective (eg, for clarithromycin and fluoroquinolones)
- Do not use a triple regimen containing clarithromycin, if clarithromycin is commonly prescribed locally or the patient has taken clarithromycin in the past, for any indication
- Avoid fluoroquinolones if a quinolone (eg, ciprofloxacin, levofloxacin or moxifloxacin) has been given previously, even for any indication
- Following treatment failure, do not reuse drugs for which resistance is likely to have developed (ie, clarithromycin and fluoroquinolones)
Recommendations for treating HP

- Use a treatment which achieves >90% eradication in local population
- If this is not known, use e.g.
 - 14 day quadruple regimen (PPI, amox, clari, nitroimidazole)
 - 10 days sequential treatment (PPI plus amox 5 days, followed by PPI, clari, nitroimidazole for 5 days)
 - Bismuth based quadruple regimens can be used as first line therapies
 - Newer drugs furazolidine, nitazoxanide need evaluating